设
使定义在区间
上的函数,其导函数为
.如果存在实数
和函数
,其中
对任意的
都有
,使得
,则称函数
具有性质
.
(1)设函数
,其中
为实数
①求证:函数
具有性质
;
②求函数
的单调区间
(2)已知函数
具有性质
,给定
,设
为实数.
,且
,若
,求
的取值范围
(本小题满分12分)
假设有5个条件很类似的女孩,把她们分别记为A,C,J,K,S。她们应聘秘书工作,但只有3个秘书职位,因此5人中仅有三人被录用。如果5人被录用的机会
均等,分别计算下列事情的概率有多大?
(1)女孩K得到一个职位
(2)女孩K和S各得到一个职位
(3)女孩K或S得到一个职位
(本小题满分12分)
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:
,
(,
)
(本小题满分10分)
计算 ,写出算法的程序.
列三角形数表
1 -----------第一行
2 2 -----------第二行
3 4 3 -----------第三行
4 7 7 4 -----------第四行 5 11 14 11 5
…… … …
…… … ……
假设第行的第二个数为
(1)依次写出第六行的所有数字;
(2)归纳出的关系式并求出
的通项公式;
(3)设求证:
…
(本小题满分12分)
画出选修1—2第二章《推理与证明》的知识结构图。