如图,椭圆
的顶点为
,焦点为
,
,
.
(Ⅰ)求椭圆 的方程;
(Ⅱ)设 为过原点的直线, 是与 垂直相交于 点,与椭圆相交于 , 两点的直线, .是否存在上述直线 使 成立?若存在,求出直线 的方程;并说出;若不存在,请说明理由.
(本小题满分12分)已知,
,
(1)求和
;
(2)若记符号,
①在图中把表示“集合”的部分用阴影涂黑;
②求和
.
(本小题满分15分)设,
.
(1)当时,求曲线
在
处的切线的斜率;
(2)如果存在,使得
成立,求满足上述条件的最大整数
;
(3)如果对于任意,都有
成立,求实数
的取值范围.
(本小题满分15分)已知函数,
(1)若,且
的取值范围
(2)当时,
恒成立,且
的取值范围
数列的前
项和为
,
,
,等差数列
满足
,
(I)分别求数列,
的通项公式;
(II)若对任意的,
恒成立,求实数
的取值范围.
若向量,
其中
,记函数
,若函数
的图像与直线
(
为常数)相切,并且切点的横坐标依次成公差为
的等差数列。
(1)求的表达式及
的值;
(2)将函数的图像向左平移
,得到
的图像,当
时,
的交点横坐标成等比数列,求钝角
的值。