如图,在平行四边形 A B C D 中, A B = 2 B C , ∠ A B C = 120 ° 。 E 为线段 A B 的中点,将 △ A D E 沿直线 D E 翻折成 △ A ` D E ,使平面 A ` D E ⊥ 平面 B C D , F 为线段 A ` C 的中点.
(Ⅰ)求证: B F / / 平面 A ` D E ; (Ⅱ)设 M 为线段 D E 的中点,求直线 F M 与平面 A ` D E 所成角的余弦值。
已知函数。 (1)求; (2)求的通项公式; (3)设
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的关系式为。已知甲、乙两地相距100千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
①设x>0, y>0且x+y=1,求证:。 ②已知
已知命题p:不等式无实数解, 命题是R上的增函数,若p或q为真命题,p且q为假命题,求实数a的取值范围。
解下列不等式:①;②
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号