已知抛物线的方程过点.
(I)求抛物线的方程,并求其准线方程;
(II)是否存在平行于(O为坐标原点)的直线,使得直线与抛物线有公共点,且直线与的距离等于?若存在,求出直线的方程;若不存在,说明理由。
已知关于x,y的方程C:.
(1)当m为何值时,方程C表示圆。
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且
=
,求m的值。
已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且
.
求证:(1)四边形EFGH是梯形;
(2)FE和GH的交点在直线AC上.
求经过三点A,B(
),C(0,6)的圆的方程,并指出这个圆半径和圆心坐标.
(本小题满分13分)
已知函数,
为正常数.
(1)若,且
,求函数
的单调增区间;
(2)若,且对任意
,
,都有
,求
的的取值范围.
(本小题满分13分)
给定椭圆>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”
。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
。
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点。求证:
⊥
.