游客
题文

如图,在长方体 A B C D - A 1 B 1 C 1 D 1 中, E , H 分别是棱 A 1 B 1 , D 1 C 1 上的点(点 E B 1 不重合),且 E H / / A 1 D 1 . 过 E H 的平面与棱 B B 1 , C C 1 相交,交点分别为 F , G .
image.png

(I)证明: A D / / 平面 E F G H ;

(II)设 A B = 2 A A 1 = 2 a .在长方体 A B C D - A 1 B 1 C 1 D 1 内随机选取一点.记该点取自几何体 A 1 A B F E - D 1 D C G H 内的概率为 p ,当点 E , F 分别在棱 A 1 B 1 上运动且满足 E F = a 时,求 p 的最小值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1)求甲答对试题数的分布列及数学期望;
(2)求甲、乙两人至少有一人入选的概率.

分别是角A、B、C的对边,,且
(1)求角B的大小;
(2)设的最小正周期为上的最大值和最小值.

(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
已知抛物线,F是焦点,直线l是经过点F的任意直线.
(1)若直线l与抛物线交于两点A、B,且(O是坐标原点,M是垂足),求动点M的轨迹方程;
(2)若C、D两点在抛物线上,且满足,求证直线CD必过定点,并求出定点的坐标.

(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
已知直线l:与双曲线C:相交于A、B两点.
(1)求实数a的取值范围;
(2)当实数a取何值时,以线段AB为直径的圆经过坐标原点.

(本题满分10分)本题共3个小题,第1小题满分4分,第2小题满分3分,第3小题满分3分.
已知直线讨论当实数m为何值时,(1)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号