如图,已知四棱锥 P - A B C D 的底面为等腰梯形, A B / / C D , A C ⊥ B D ,垂足为 H , P H 是四棱锥的高, E 为 A D 中点. (1)证明: P E ⊥ B C ;
(2)若 ∠ A P B = ∠ A D B = 60 ° ,求直线 P A 与平面 P E H 所成角的正弦值.
已知函数() (1)当时,求曲线在处的切线方程; (2)当时,试讨论的单调性.
如图,在四棱锥中,,,. (1)求证; (2)设点在棱上,且,试求三棱锥E—GCD的体积.
已知数列的前项和为,且, (1)求数列的通项公式 (2)数列的通项公式,求数列的前项和为
已知函数,直线图象的任意两条对称轴,且的最小值为. (1)求在的单调增区间; (2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,若关于的方程,在区间上有解,求实数k的取值范围.
在中,角所对的边分别为,且满足,. (1)求的面积; (2)若,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号