设
,
...,
,...是坐标平面上的一列圆,它们的圆心都在
轴的正半轴上,且都与直线
相切,对每一个正整数
,圆
都与圆
相互外切,以
表示
的半径,已知
为递增数列.
(Ⅰ)证明:
为等比数列;
(Ⅱ)设
=1,求数列
的前
项和.
如图, 在直三棱柱中,
,
,
,点
是
的中点,
⑴ 求证:;
⑵ 求证:
(本小题满分14分)
已知函数(
…是自然对数的底数)的最小值为
.
(Ⅰ)求实数的值;
(Ⅱ)已知且
,试解关于
的不等式
;
(Ⅲ)已知且
.若存在实数
,使得对任意的
,都有
,试求
的最大值.
(本小题满分12分)
如图,是以
为直径的半圆上异于
、
的点,矩形
所在的平面垂直于该半圆所在的平面,且
.
(Ⅰ)求证:;
(Ⅱ)设平面与半圆弧的另一个交点为
.
①试证:;
②若,求三棱锥
的体积.
(本小题满分12分)
已知为坐标原点,对于函数
,称向量
为函数
的伴随向量,同时称函数
为向量
的伴随函数.
(Ⅰ)设函数,试求
的伴随向量
的模;
(Ⅱ)记的伴随函数为
,求使得关于
的方程
在
内恒有两个不相等实数解的实数
的取值范围.
(本小题满分12分)
如图,抛物线的顶点为坐标原点
,焦点
在
轴上,准线
与圆
相切.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点在抛物线
上,且
,求点
的坐标.