游客
题文

为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)

image.png

(Ⅰ)在答题卡上的表格中填写相应的频率;
(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;
(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。

科目 数学   题型 解答题   难度 中等
知识点: 误差估计
登录免费查看答案和解析
相关试题

设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10T10.

已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列
a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.

设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1S2、…、S12中哪一个值最大,并说明理由.

已知函数f(x)在(-∞,0)∪(0,+∞)上有定义,且在(0,+∞)上是增函数,f(1)=0,又g(θ)=sin2θmcosθ-2m,θ∈[0,],设M={m|g(θ)<0,m∈R},N={m|fg(θ)]<0},求MN.

某工厂拟建一座平面图(如下图)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域.
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号