已知抛物线
经过椭圆
的两个焦点.
(1) 求椭圆
的离心率;
(2) 设
,又
为
与
不在
轴上的两个交点,若
的重心在抛物线
上,求
和
的方程.
已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex;
(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex.
已知椭圆C:的离心率为
,
是椭圆的两个焦点,
是椭圆上任意一点,且
的周长是
.
(1)求椭圆C的方程;
(2)设圆T:,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在
轴上移动且
时,求EF的斜率的取值范围.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面
侧面
,
,线段AC、A1B上分别有一点E、F且满足
.
(1)求证:;
(2)求点的距离;
(3)求二面角的平面角的余弦值。
某公司从大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分).公司规定:成绩在180分以上者到甲部门工作,180分以下者到乙部门工作,另外只有成绩高于180分的男生才能担任助理工作.
(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取8人,再从这8人中选3人,那么至少有一人是甲部门人选的概率是多少?
(2)若从所有甲部门人选中随机选3人,用X表示所选人员中能担任助理工作的人数,写出X的分布列,并求出X的数学期望.
已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=,求数列{cn}的通项公式;
(2)若,求数列{an}的前n项和Sn.