(本小题满分13分)对于数列,规定数列为数列的一阶差分数列,其中;一般地,规定为的阶差分数列,其中,且.(1)已知数列的通项公式,试证明是等差数列;(2)若数列的首项,且满足,求数列及的通项公式;(3)在(2)的条件下,判断是否存在最小值,若存在求出其最小值,若不存在说明理由.
设,函数的定义域为,且,当,有;函数是定义在上单调递增的奇函数. (Ⅰ)求和的值(用表示); (Ⅱ)求的值; (Ⅲ)当时, 对所有的均成立,求实数的取值范围.
已知点. (Ⅰ)若,求和的值 (Ⅱ)若,其中为坐标原点,求的值.
设是定义在上以2为周期的函数,对,用表示区间. 已知当时,函数. (1)求在上的解析式; (2)对自然数,求集合{使方程在上有两个不相等的实根}
设函数的图象关于点对称. (Ⅰ)求; (Ⅱ)求函数的单调增区间; (Ⅲ)求函数在上的最大值和取最大值时的.
已知向量,分别求使下列结论成立的实数的值 (Ⅰ); (Ⅱ)
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号