已知,
分别是双曲线
的左右焦点,以坐标原点
为圆心,以双曲线的半焦距
为半径的圆与双曲线在第一象限的交点为
,与
轴正半轴的交点为
,点
在
轴上的射影为
,且
.
⑴求双曲线的离心率;
⑵若交双曲线于点
,且
,求
.
某经销商试销A、B两种商品一个月(30天)的记录如下:
日销售量(件) |
0 |
1 |
2 |
3 |
4 |
5 |
商品A的频数 |
3 |
5 |
7 |
7 |
5 |
3 |
商品B的频数 |
4 |
4 |
6 |
8 |
5 |
3 |
若售出每种商品1件均获利40元,用表示售出A、B商品的日利润值(单位:元).将频率视为概率.
(Ⅰ)设两种商品的销售量互不影响,求两种商品日获利值均超过100元的概率;
(Ⅱ)由于某种原因,该商家决定只选择经销A、B商品的一种,你认为应选择哪种商品,说明理由.
如图,是半径为2,圆心角为
的扇形,
是扇形的内接矩形.
(Ⅰ)当时,求
的长;
(Ⅱ)求矩形面积的最大值.
已知函数f(x)=|x-2|+2|x-a|(a∈R).
(I)当a=1时,解不等式f(x)>3;
(II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围
在平面直角坐标系.x0y中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线 C的极坐标方程为:
(I)求曲线l的直角坐标方程;
(II)若直线l的参数方程为(t为参数),直线l与曲线C相交于A、B两点求|AB|的值
如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆 O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆 O于点E、F,点M在EF上,且:
(I)求证:PA·PB=PM·PQ;(II)求证:.