(本小题满分8分)已知平面向量a,b
(Ⅰ)若存在实数,满足x
a
b,y
a
b且x⊥y,求出
关于
的关系式
;
(Ⅱ)根据(Ⅰ)的结论,试求出函数在
上的最小值.
设函数
(1)证明:
;
(2)若
,求
的取值范围.
在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,半圆
的极坐标方程为
.
(1)求
得参数方程;
(2)设点
在
上,
在
处的切线与直线
垂直,根据(1)中你得到的参数方程,确定
的坐标.
如图,
是
外一点,
是切线,
为切点,割线
与
相交于
,
,
为
的中点,
的延长线交
于点
.证明:
(1)
;
(2)
已知函数
,曲线
在点
处的切线与轴交点的横坐标为
.
(1)求
;
(2)证明:当
时,曲线
与直线
只有一个交点.
设
分别是椭圆
的左右焦点,
是
上一点且
与
轴垂直,直线
与
的另一个交点为
.
(1)若直线
的斜率为
,求
的离心率;
(2)若直线
在
轴上的截距为
,且
,求
.