设F1,F2分别是椭圆x2a2+y2b2=1a>b>0的左右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N. (1)若直线MN的斜率为34,求C的离心率; (2)若直线MN在y轴上的截距为2,且MN=5F1N,求a,b.
(选修4-5:不等式选讲) 设正数满足,求的最小值.
(选修4-4:坐标系与参数方程) 在极坐标系中,圆是以点为圆心,为半径的圆. (1)求圆的极坐标方程; (2)求圆被直线所截得的弦长.
(选修4-2:矩阵与变换) 已知,求矩阵.
(选修4-1:几何证明选讲) 如图,AD是∠BAC的平分线,圆O过点A且与边BC相切于点D,与边AB、AC分别交于点E、F,求证:EF∥BC.
(本小题满分16分)设函数有且仅有两个极值点. (1)求实数的取值范围; (2)是否存在实数满足?如存在,求的极大值;如不存在,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号