围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y (单位:元).
(1)将y表示为x的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
(本小题满分10分)
写出“若,则
”的逆命题、否命题、逆否命题,并判其真假.
(本小题满分12分)已知命题,命题
,若
是真命题,
是假命题,求实数
的取值范围。
已知函数,
①用定义法判断的单调性。
②若当时,
恒成立,求实数
的取值范围
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。
已知函数对一切实数x , y都满足
且
.
(1)求的值。(2)求
的解析式。
(3)当x∈时
<2x+
恒成立,求
的取值范围。