(本小题10分)“雪花曲线”因其形状类似雪花而得名,它可以以下列方式产生,如图,有一列曲线,已知
是边长为1的等边三角形,
是对
进行如下操作得到:将
的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(
).
(1)记曲线的边长和边数分别为
和
(
),求
和
的表达式;
(2)记为曲线
所围成图形的面积,写出
与
的递推关系式,并求
.
设a,b,c R,a+b+c=0,abc=1.
(1)证明:ab+bc+ca<0;
(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥ .
在直角坐标系xOy中,曲线C的参数方程为 (t为参数且t≠1),C与坐标轴交于A、B两点.
(1)求 ;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.
设函数 ,曲线 在点( ,f( ))处的切线与y轴垂直.
(1)求b.
(2)若 有一个绝对值不大于1的零点,证明: 所有零点的绝对值都不大于1.
已知椭圆 的离心率为 , , 分别为 的左、右顶点.
(1)求 的方程;
(2)若点 在 上,点 在直线 上,且 , ,求 的面积.
如图,在长方体 中,点 分别在棱 上,且 , .
(1)证明:点 在平面 内;
(2)若
,
, ,求二面角
的正弦值.