下面是调查某校学生身高的数据:(单位:cm)
分组 |
频数 |
频率 |
156.5 ~ 160.5 |
3 |
0.06 |
160.5 ~ 164.5 |
4 |
|
164.5 ~ 168.5 |
|
|
168.5 ~ 172.5 |
12 |
|
172.5 ~ 176.5 |
13 |
0.26 |
176.5 ~ 180.5 |
6 |
0.12 |
合计 |
|
1 |
(Ⅰ) 完成上面的表格;根据上表,画出频率分布直方图;
(Ⅱ)根据上表估计,数据在164.5 ~ 176.5 范围内的频率是多少?
(本小题满分10分)若数列的前n项和为
,且方程
有一个根为
-1,n=1,2,3...
(1)求;
(2)猜想数列的通项公式,并用数学归纳法证明
(本小题满分10分)已知直三棱柱中,
,
是棱
的中点.如图所示.
(1)求证:平面
;
(2)求锐二面角的大小.
(本小题满分10分)已知圆C的极坐标方程为=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,若直线
与圆C相切.
求(1)圆C的直角坐标方程;
(2)实数k的值.
(本小题满分10分)已知函数f(x)=ln(2x-e), 点P(e,f(e))为函数的图像上一点
(1)求导函数的解析式;
(2)求f(x)=ln(2x-e)在点P(e,f(e))处的切线的方程.
(本小题满分16分)设函数f(x)=xsinx(x∈R),
(Ⅰ)证明f(x+2kπ)-f(x)=2kπsinx,其中k为整数;
(Ⅱ)设x0为f(x)的一个极值点,证明 ;
(提示)
(Ⅲ)设f(x)在(0,+∞)内的全部极值点按从小到大的顺序排列a1,a2, ,an, ,证明.