(本小题满分14分)已知区域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率
.
⑴求圆C及椭圆C1的方程;
⑵设圆与
轴正半轴交于点D,
点为坐标原点,
中点为
,问是否存在直线
与椭圆
交于
两点,且
?若存在,求出直线
与
夹角
的正切值的取值范围;若不存在,请说明理由.
甲、乙两同学投球命中的概率分别为和
,投中一次得2分,不中则得0分.如果每人投球2次,求:
(Ⅰ)“甲得4分,并且乙得2分”的概率;
(Ⅱ)“甲、乙两人得分相等”的概率.
已知向量a, b
,若
.(I)求函数
的解析式和最小正周期;
(II) 若,求
的最大值和最小值.
选修4-5:不等式选讲
已知|x-4|+|3-x|<a
(1)若不等式的解集为空集,求a的范围
(2)若不等式有解,求a的范围
选修4-4:几何证明选讲
在曲线:
上求一点,使它到直线
:
的距离最小,并求出该点坐标和最小距离。
选考题:请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。本题满分10分.
22.选修4-1:几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,
交AC的延长线于点E.OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若,求
的值.