(本小题满分14分)
设函数的定义域为R,当x<0时,
>1,且对任意的实数x,y∈R,有
.
(1)求,判断并证明函数
的单调性;
(2)数列满足
,且
,
①求通项公式;
②当时,不等式
对不小于2的正整数
恒成立,求x的取值范围.
如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。
(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
某园艺师用两种不同的方法培育了一批珍贵树苗,在树苗3个月大的时候,随机抽取甲、乙两种方法培育的树苗各10株,测量其高度,得到的茎叶图如图所示(单位:cm).
(Ⅰ)依茎叶图判断用哪种方法培育的树苗的平均高度大?
(Ⅱ)现从用两种方法培育的高度不低于80cm的树苗中随机抽取两株,求至少有一株是甲方法培育的概率。
在△ABC中,角A,B,C所对的边分别为a,b,c,且1+=
.
(Ⅰ)求角A;
(Ⅱ)已知,求
的值。
如图,设F(-c,0)是椭圆的左焦点,直线l:x=-
与x轴交于P点,MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点P的直线m与椭圆相交于不同的两点A,B。
①证明:∠AFM=∠BFN;
②求△ABF面积的最大值。
如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。
(Ⅰ)求证:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。