甲乙两位同学参加数学竞赛培训。现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为X,求X的分布列及数学期望。
已知是椭圆
的左、右焦点,过点
作
倾斜角为的动直线
交椭圆于
两点.当
时,
,且
.
(1)求椭圆的离心率及椭圆的标准方程;
(2)求△面积的最大值,并求出使面积达到最大值时直线
的方程
.
已知函数.
(1)解关于的不等式
;
(2)若对,
恒成立,求
的取值范围.
已知直线的参数方程为
(t为参数),曲线C的极坐标方程是
以极点为原点,极轴为x轴正方向建立直角坐标系,点
,直线
与曲
线C交于A,B两点.
(1)写出直线的普通方程与曲线C的直角坐标方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值.
某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图
都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求分数在[90,100]之间的份数
的数学期望
.
已知函数.
(1)若从集合中任取一个元素
,从集合
中任取一个元素
,求方程
有两个不相等实根的概率;
(2)若是从区间
中任取的一个数,
是从区间
中任取的一个数,求方程
没有实根的概率.