(本小题满分12分)已知椭圆的两顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程。
已知函数. (1)求曲线在点处的切线方程; (2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
设函数. (1)若函数在时取得极小值,求的值; (2)若函数在定义域上是单调函数,求的取值范围.
解关于的不等式.
已知函数的定义域为[2,3],值域为[1,4];设. (1)求a,b的值; (2)若不等式在上恒成立,求实数k的取值范围; (3)若有三个不同的实数解,求实数k的取值范围.
已知,m是是实常数, (1)当m=1时,写出函数的值域; (2)当m=0时,判断函数的奇偶性,并给出证明; (3)若是奇函数,不等式有解,求a的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号