(本小题满分16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该单位不亏损?
已知数列是递增的等比数列,满足
,且
是
.
的等差中项,数列
满足
,其前n项和为
,且
.
(1)求数列,
的通项公式;
(2)数列的前n项和为
,若不等式
对一切
恒成立,求实数
的取值范围.
已知点A,B的坐标分别是,
,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是-1.
(1)过点M的轨迹C的方程;
(2)过原点作两条互相垂直的直线.
分别交曲线C于点A,C和B,D,求四边形ABCD面积的最小值.
在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
(1)证明DF⊥平面ABE;
(2)求二面角A-BD-E的余弦值.
在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.
(1)若b=,a=3,求c的值;
(2)设t=sinAsinC,求t的最大值.
已知定义域为的函数
是奇函数.
(Ⅰ)求的值;
(Ⅱ)判断函数的单调性,并用定义证明;
(Ⅲ)若对任意的,不等式
恒成立,求实数
的取值
范围.