(本小题满分16分)已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有
(1)求a3,a5;
(2)设(n∈N*),证明:数列{bn}是等差数列;
(3)设cn=qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.
如图,A,B,C是⊙O上的三点,BE切⊙O于点B,D是与⊙O的交点.若
,
,求证:
.
已知函数(
R),
为其导函数,且
时
有极小值
.
(1)求的单调递减区间;
(2)若,
,当
时,对于任意x,
和
的值至少有一个是正数,求实数m的取值范围;
(3)若不等式(
为正整数)对任意正实数
恒成立,求
的最大值.
如果数列满足:
且
,则称数列
为
阶“归化数列”.
(1)若某4阶“归化数列”是等比数列,写出该数列的各项;
(2)若某11阶“归化数列”是等差数列,求该数列的通项公式;
(3)若为n阶“归化数列”,求证:
.
在平面直角坐标系中,已知椭圆的焦点在
轴上,离心率为
,且经过点
.
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设
为圆
上不在坐标轴上的任意一点,
为
轴上一点,过圆心
作直线
的垂线交椭圆右准线于点
.问:直线
能否与圆
总相切,如果能,求出点
的坐标;如果不能,说明理由.
某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中
,
,且
中,
,经测量得到
.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点
作一直线交
于
,从而得到五边形
的市民健身广场,设
.
(1)将五边形的面积
表示为
的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.