(本小题满分14分)
设数列的前n项和为
,已知
.
(1)求数列的通项公式;
(2)令.用数学归纳法证明:
;
(3)设数列
的前n项和为
,若存在整数m,使对任意
且
,都有
成立,求m的最大值.
设数列满足:①
;②所有项
;③
.设集合
,将集合
中的元素的最大值记为
.换句话说,
是数列
中满足不等式
的所有项的项数的最大值.我们称数列
为数列
的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)请写出数列1,4,7的伴随数列;
(2)设,求数列
的伴随数列
的前
之和;
(3)若数列的前
项和
(其中
常数),求数列
的伴随数列
的前项和
.
如图,在海岸线一侧有一休闲游乐场,游乐场的前一部分边界为曲线段
,该曲线段是函数
,
的图像,图像的最高点为
.边界的中间部分为长
千米的直线段
,且
.游乐场的后一部分边界是以
为圆心的一段圆弧
.
(1)求曲线段的函数表达式;
(2)曲线段上的入口
距海岸线
最近距离为
千米,现准备从入口
修一条笔直的景观路到
,求景观路
长;
(3)如图,在扇形区域内建一个平行四边形休闲区
,平行四边形的一边在海岸线
上,一边在半径
上,另外一个顶点
在圆弧
上,且
,求平行四边形休闲区
面积的最大值及此时
的值.
已知分别是椭圆
的左、右焦点,椭圆
过点
且与抛物线
有一个公共的焦点.
(1)求椭圆方程;
(2)直线过椭圆
的右焦点
且斜率为
与椭圆
交于
两点,求弦
的长;
(3)以第(2)题中的为边作一个等边三角形
,求点
的坐标.
请仔细阅读以下材料:
已知是定义在
上的单调递增函数.
求证:命题“设,若
,则
”是真命题.
证明:因为,由
得
.
又因为是定义在
上的单调递增函数,
于是有.①
同理有.②
由①+ ②得.
故,命题“设,若
,则
”是真命题.
请针对以上阅读材料中的,解答以下问题:
(1)试用命题的等价性证明:“设,若
,则:
”是真命题;
(2)解关于的不等式
(其中
).
设数列满足:①
;②所有项
;③
.设集合
,将集合
中的元素的最大值记为
.换句话说,
是数列
中满足不等式
的所有项的项数的最大值.我们称数列
为数列
的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)若数列的伴随数列为1,1,1,2,2,2,3,请写出数列
;
(2)设,求数列
的伴随数列
的前100之和;
(3)若数列的前
项和
(其中
常数),试求数列
的伴随数列
前
项和
.