若f(x)=是奇函数,且f(2)=. (1)、求实数p、q的值;(2)判断f(x)在(-∝,-1)的单调性,并加以证明。
已知命题p:“方程有解”,q:“上恒成立”,若p或q为真命题,p且q为假命题,求实数的取值范围.
在直三棱柱中,AB=AC,D,E为棱的中点 (1)证明:平面; (2)证明:
(1)已知椭圆的中心为坐标原点,且与双曲线有相同的焦点,椭圆的 离心率e=,求椭圆的标准方程; (2)已知椭圆的离心率为,求m的值.
已知命题 (1)当时,若“p且q”为真命题,求实数的取值范围; (2)若非p是非q的充分不必要条件,求实数的取值范围.
椭圆的焦点分别是和,已知椭圆的离心率过中心作直线与椭圆交于A,B两点,为原点,若的面积是20, 求:(1)的值(2)直线AB的方程
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号