已知在△ABC中, a、b、c分别为角A、B、C的对边,且
(1)若,试判断△ABC的形状;
(2)若a=,b+c=3,求b和c的值.
(本小题满分12分)已知数列
(1)证明数列为等差数列,并求
的通项公式;
(2)设,求数列
的前
项和。
(本小题满分12分)
在四棱锥P—ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2。
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,试确定
的值,使得二面角Q—BD—P为45°。
(本小题满分12分)某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。
(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求
的分布列及
的值。
(本小题满分10分)在中,
分别为角A、B、C的对边,且满足
(Ⅰ)求角A的值;
(Ⅱ)若的最大值。
(本小题满分14分)
设为实数,函数
(Ⅰ)讨论的奇偶性;
(Ⅱ)求在
上的最小值.
(Ⅲ)求在
上的最小值.