(本小题满分14分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)
(Ⅰ)将y表示为x的函数
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
如图,椭圆C:+
=1(a>b>0)的右焦点为F,右顶点、上顶点分别为点A、B,且|AB|=
|BF|.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若斜率为2的直线l过点(0,2),且l交椭圆C于P、Q两点,OP⊥OQ.求直线l的方程及椭圆C的方程.
已知函数f(x)=x2+2x+alnx(a∈R).
(1)当时a=﹣4时,求f(x)的最小值;
(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围.
已知各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有 2Sn=2.函数f(x)=x2+x,数列{bn}的首项b1=
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令求证:{cn}是等比数列并求{cn}通项公式;
(Ⅲ)令dn=an•cn,(n为正整数),求数列{dn}的前n项和Tn.
已知数列{an}的前n项和Sn,a1=﹣,Sn+
(n≥2).
(1)计算S1,S2,S3,猜想Sn的表达式并用数学归纳法证明;
(2)设bn=,数列的{bn}的前n项和为Tn,求证:Tn>﹣
.
(Ⅰ)求右焦点坐标是(2,0),且经过点的椭圆的标准方程
(Ⅱ)求与椭圆共焦点且过点
的双曲线的标准方程.