(本小题满分14分)已知圆C经过点,圆心落在 轴上(圆心与坐标原点不重合),且与直线 相切.(Ⅰ)求圆C的标准方程;(Ⅱ)求直线Y="X" 被圆C所截得的弦长;(Ⅲ)l2是与l1垂直并且在Y轴上的截距为b的直线,若)l2与圆C有两个不同的交点,求b的取值范围.
平面上有条抛物线,其中每两条都相交于两点,并且每三条都不相交于同一点,则这条抛物线把平面分成多少个部分?
已知是定义在上的不恒为零的函数,且对任意的都满足:,若,(),求证:.
设是上的偶函数,求的值.
设对有意义,,且成立的充要条件是. (1)求与的值; (2)当时,求的取值范围.
设函数是二次函数,已知,且有两个相等实根.问是否存在一个常数,使得直线将函数的图象与坐标轴所围成的图形分成面积相等的两部分,若不存在,请说明理由;若存在,则求出此常数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号