游客
题文

(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为

           
0          
2             
   3   
   4   
   5   
       p        
0.03          
   P1              
   P2        
P3          
P4              

(1)  求q的值;    
(2)  求随机变量的数学期望E;
(3)  试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

其中,曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.

的内角的对边分别为,已知,求

已知数列{an}的前n项和,且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列的前n项和Tn

已知函数
(1)求的定义域及最小正周期;
(2)求的单调递增区间。

已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号