已知f(x)=2x3+ax2+bx+c在x=-1处取得极值8,又x=2时,f(x) 也取得极值。
(1)求a,b,c的值,写出f(x)的解析式;
(2)求f(x)的单调区间。
过点M(0,1)作直线,使它被两已知直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.
已知过点A(1,1)且斜率为-m(m>0)的直线l与x、y轴分别交于P、Q两点,过P、Q两点作直线2x+y=0的垂线,垂足为R、S,求四边形PRSQ的面积的最小值.
某运输公司接受了向抗洪抢险地区每天至少送180 t支援物资的任务,该公司有8辆载重为6 t的A型卡车与4辆载重为10 t的B型卡车,有10名驾驶员,每辆卡车每天往返次数为A型卡车4次,B型卡车3次,每辆卡车每天成本费为A型卡车320元,B型卡车504元.请你给出该公司调配车辆的方案,使公司所花的成本费最低.
如左下图,在一段直的河岸同侧有A、B两个村庄,相距5 km,它们距河岸的距离分别为3 km、6 km.现在要在河边修一抽水站并铺设输水管道,同时向两个村庄供水.如果预计修建抽水站需8.25万元(含设备购置费和人工费),铺设输水管每米需用24.5元(含人工费和材料费).现由镇政府拨款30万元,问A、B两村还需共同自筹资金多少,才能完成此项工程?(准确到100元)(参考数据:=8.06,
=9.85,
=3.28,
=6.57)
已知直线l:x+y-2=0,一束光线过点P(0,+1),以120°的倾斜角投射到l上,经过l反射,求反射光线所在直线的方程.