已知f(x)=2x3+ax2+bx+c在x=-1处取得极值8,又x=2时,f(x) 也取得极值。
(1)求a,b,c的值,写出f(x)的解析式;
(2)求f(x)的单调区间。
(10分)设复数z=m+1+(m-1)i,试求m取何值时
(1)Z是实数;
(2)Z是虚数;
(3)Z对应的点位于复平面的第一象限
选修4—5;不等式选讲
已知a和b是任意非零实数.
(1)求
的最小值.
(2)若不等式
恒成立,求实数x的取值范围.
选修4—4;坐标系与参数方程
在平面直角坐标系xOy中,已知曲线
,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
、2倍后得到曲线
试写出直线
的直角坐标方程和曲线
的参数方程;
(2)在曲线
上求一点P,使点P到直线
的距离最大,并求出此最大值.
选修4-1:几何证明选讲
在
中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.
(1)求证:
;
(2)若AC=3,求
的值.
已知椭圆
:
的左、右顶点分别为
,
,
为短轴的端点,△
的面积为
,离心率是
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点
是椭圆
上异于
,
的任意一点,直线
,
与直线
分别交于
,
两点,证明:以
为直径的圆与直线
相切于点
(
为椭圆
的右焦点).