⑴在中,已知
求此三角形最小边的长;
⑵在
中
,已知
,求
.
已知为实数,
:点
在圆
的内部;
:
都有
.
(1)若为真命题,求
的取值范围;
(2)若为假命题,求
的取值范围;
(3)若“且
”为假命题,且“
或
”为真命题,求
的取值范围.
如图,设椭圆:
的离心率
,顶点
的距离为
,
为坐标原点.
(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆
分别交于
两点.
(ⅰ)试判断点到直线
的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.
已知函数在
处达到极值,
(1)求的值;
(2)若对
恒成立,求
的取值范围.
如图,在四棱锥中,底面为直角梯形,
,
,
底面
,且
,
、
分别为
、
的中点.
(1)求证:平面
;
(2)求证:.
已知函数.
(1)求函数在点
处的切线方程;
(2)求函数的单调递减区间.