(本题满分12分)已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。
(1)求AB边所在的直线方程;
(2)求中线AM的长。
等差数列的前
项和记为
,已知
.
(1)求数列的通项
;
(2)若,求
;
设命题;命题
:不等式
对任意
恒成立.若
为真,且
或
为真,求
的取值范围.
求经过直线的交点M,且满足下列条件的直线方程:(1)与直线2x+3y+5=0平行; (2)与直线2x+3y+5=0垂直.
如图,已知椭圆:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
.(12分)
(1)求椭圆的方程;
(2)求的最小值,并求此时圆
的方程;
(3)设点是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求证:
为定值.
如图,在平面直角坐标系中,点
,直线
。设圆
的半径为
,圆心在
上。
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围。