游客
题文

(本小题满分13分)
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分14分)已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于两点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.

(本小题满分14分)如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.

(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;

(本小题满分14分)函数
(1)求的周期;(2)上的减区间;
(3)若,求的值。

(本小题满分12分)如图,函数y=2sin(x+φ) x∈R , 其中0≤φ≤的图象与y轴交于点(0,1).

(Ⅰ)求φ的值;
(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求

(本小题满分12分)已知函数
(1)求实数a的值;
(2)求函数的值域。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号