如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(I)求证:BD⊥FG;
(II)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(1)求不等式的解集;
(2)若关于的不等式
的解集非空,求实数
的取值范围.
(本小题满分10分)选修4-4:极坐标于参数方程
已知曲线(
为参数),
(
为参数).
(1)化,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若上的点
对应的参数为
,
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.
(本小题满分10分)选修4-1:平面几何选讲
如图,点在圆
直径
的延长线上,
切圆
于
点,
的平分线
交
于点
,交
于
点.
(1)求的度数;
(2)若,求
.
(本小题满分12分)已知函数,
.
(1)证明:;
(2)若在
恒成立,求
的最小值.
(本小题12分)已知椭圆的两个焦点是
和
,并且经过点
,抛物线
的顶点在坐标原点,焦点恰好是椭圆
的右顶点
.
(1)求椭圆和抛物线
的标准方程;
(2)过点作两条斜率都存在且互相垂直的直线
,
,
交抛物线
于点
,
,
交抛物线
于点
,
,求
的最小值.