(本小题满分13分)
已知函数,
(其中
),其部分图像如图所示。
(I)求的解析式;
(II)求函数在区间
上的最大值及相应的
值。
已知等差数列的首项
,公差
.且
分别是等比数列
的
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)设数列对任意自然数
均有
…
成立,求
…
的值.
已知△的两个顶点
的坐标分别是
,且
所在直线的斜率之积等于
.
(Ⅰ)求顶点的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(Ⅱ)当时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合) 试问:直线
与
轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层,…,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第
个竖直通道(从左至右)的概率为
,某研究性学习小组经探究发现小弹子落入第
层的第
个通道的次数服从二项分布,请你解决下列问题.
(Ⅰ)试求及
的值,并猜想
的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为
,其中
,试求
的分布列
及数学期望.
已知A、B、C为的三个内角且向量
共线。
(Ⅰ)求角C的大小;
(Ⅱ)设角的对边分别是
,且满足
,试判断
的形状.
已知区间,函数
的定义域为
(1)若函数在区间上是增函数,求实数
的取值范围
(2)若,求实数
的取值范围
(3)若关于的方程
在区间
内有解,求实数
的取值范围