近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
|
患心肺疾病 |
不患心肺疾病 |
合计 |
男 |
|
5 |
|
女 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求
的分布列,数学期望以及方差.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式 其中
)
(本小题满分13分)对于集合,定义函数
,对于两个集合
,
,定义集合
已知
,
.
(Ⅰ)写出与
的值,并用列举法写出集合
;
(Ⅱ)用表示有限集合
所含元素的个数,求
的最小值;
(Ⅲ)求有多少个集合对满足
,且
.
(本小题满分14分)已知椭圆G的离心率为,其短轴的两端点分别为A(0,1),B(0,-1).
(Ⅰ)求椭圆G的方程;
(Ⅱ)若C,D是椭圆G上关于y轴对称的两个不同点,直线与
轴分别交于点
.试判断以
为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.
(本小题满分13分)已知函数(
为常数)在点(1,f(1))处的切线的斜率为
,
(Ⅰ)求实数a的值;
(Ⅱ)若函数在区间
上有极值,求
的取值范围.
(本小题满分13分)某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:
近视度数 |
0–100 |
100–200 |
200–300 |
300–400 |
400以上 |
学生频数 |
30 |
40 |
20 |
10 |
0 |
将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)把频率近似地看成概率,用随机变量分别表示高二、高三年级学生的近视程度,若
,求
.
(本小题满分14分)如图1,在边长为的正方形
中,
,且
,且
,
分别交
于点
,将该正方形沿
折叠,使得
与
重合,构成图
所示的三棱柱
,在图
中.
(Ⅰ)求证:;
(Ⅱ)求直线与平面
所成角的正弦值;
(Ⅲ)在底边上有一点
,使得
平面
,求
的值.