(满分9分)盒子中有大小形状相同的4只红球、2只黑球,每个球被摸到的机会均等,求下列事件的概率:(1)A=“任取一球,得到红球”;(2)B=“任取两球,得到同色球”;(3)C=“任取三球,至多含一黑球”。
(本小题满分12分)已知:、、三点坐标分别为、、,。 (1)若,求角; (2)若,求的值。
(本小题满分10分)求与轴相切,圆心在直线上,且被直线截下的弦长为的圆的方程。
本题满分12分) 已知函数 (Ⅰ)求证:函数在上单调递增; (Ⅱ)对恒成立,求的取值范围.
(本小题满分12分) 已知椭圆C过点,两个焦点为,,O为坐标原点。 (I)求椭圆C的方程; (Ⅱ)直线l过 点A(—1,0),且与椭圆C交于P,Q两点,求△BPQ面积的最大值。
(本小题满分12分) 已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且. (Ⅰ)求数列,的通项公式 (Ⅱ)记,求数列的前项和
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号