(本小题满分12分) 已知为实数,
,
(Ⅰ)若a=2,求的单调递增区间;
(Ⅱ)若,求
在[-2,2] 上的最大值和最小值。
已知数列是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列的通项公式
和数列
的前n项和
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
设椭圆的左、右顶点分别为
、
,点
在椭圆上且异于
、
两点,
为坐标原点.
(1)若直线与
的斜率之积为
,求椭圆的离心率;
(2)对于由(1)得到的椭圆,过点
的直线
交
轴于点
,交
轴于点
,若
,求直线
的斜率.
已知函数
(1)若,求
的值;
(2)若的图像与直线
相切于点
,求
的值;
(3)在(2)的条件下,求函数的单调区间.
如图,在四棱锥
中,
平面
,底面
是菱形,点O是对角线
与
的交点,
是
的中点,
.
(1) 求证:平面
;
(2) 平面平面
;
(3) 当四棱锥的体积等于
时,求
的长.