(本小题满分14分)已知函数 (>0)的图象在点处的切线方程为.(Ⅰ)用表示;(Ⅱ)若在上恒成立,求的取值范围;(Ⅲ)证明:1+++…+>+.
设直线与抛物线交于两点. (1)求线段的长;(2)若抛物线的焦点为,求的值.
给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果“”为假,且“”为真,求实数的取值范围。
已知数列的前项和,求数列成等差数列的充要条件.
设数列的前项和为,若对任意,都有. ⑴求数列的首项; ⑵求证:数列是等比数列,并求数列的通项公式; ⑶数列满足,问是否存在,使得恒成立?如果存在,求出的值,如果不存在,说明理由.
在中,内角对边的边长分别是,已知,. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号