游客
题文

为了预防好H1N1流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为         .
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过     小时后,学生才能回到教室.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(1-4班做)(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(5-7班做)(Ⅱ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:四点A,B,C,D的纵坐标之积为定值.

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(Ⅰ)证明:无论取何值,总有
(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

已知圆C:,直线L:
(1)求证:对m,直线L与圆C总有两个交点;
(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;
(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.

如图,在直三棱柱中,分别是的中点,点上,

求证:(1)EF∥平面ABC;
(2)平面平面.

已知圆C过点(1,0),且圆心在轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2,求圆C的标准方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号