在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(1-4班做)(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(5-7班做)(Ⅱ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:四点A,B,C,D的纵坐标之积为定值.
设数列
的前n项和为
,对任意的正整数n,都有
成立,记
。
(Ⅰ)求数列
的通项公式;
(Ⅱ)记
,设数列
的前n项和为
,求证:对任意正整数n都有
;
(Ⅲ)设数列
的前n项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
已知
函数
.
(Ⅰ)求函数
的定义域,并判断
的单调性;
(Ⅱ)若
,求
;
(Ⅲ)当
(
为自然对数的底数)时,设
,若函数
的极值存在,求实数
的取值范围以及函数
的极值.
如图,正方形
所在平面与平面四边形
所在平面互相垂直,
是等腰直角三角形,
。
(Ⅰ)求证:
;
(Ⅱ)设线段
的中点为
,在直线
上是否存在一点
,使得
?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
(Ⅲ)求二面角
的大小。
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中
是省外游客,其余是省内游客。在省外游客中有
持金卡,在省内游客中有
持银卡。
(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(Ⅱ)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量
,求
的分布列及数学期望
。
在
中,
为锐角,角
所对应的边分别为
,且
。
(Ⅰ)求
的值;
(Ⅱ)若
,求
的值。