在数列 a n 中, a 1 = 2 , a n - 1 = λ a n + λ n + 1 + 2 - λ 2 n n ∈ N + ,其中 λ > 0 . (Ⅰ)求数列 a n 的通项公式; (Ⅱ)求数列 a n 的前 n 项和 S n ; (Ⅲ)证明存在 k ∈ N + ,使得 a n - 1 a n ≤ a k + 1 a k 对任意 n ∈ N + a n 均成立.
已知函数和.其中. (1)若函数与的图像的一个公共点恰好在轴上,求的值; (2)若和是方程的两根,且满足,证明:当时,.
已知函数. (1)当时,求曲线在点处的切线方程; (2)当,且,求函数的单调区间.
设定义域为的函数(为实数)。 (1)若是奇函数,求的值; (2)当是奇函数时,证明对任何实数都有成立.
在中,内角的对边分别为,并且. (1)求角的大小; (2)若,求.
已知动点M到定点与到定点的距离之比为3. (Ⅰ)求动点M的轨迹C的方程,并指明曲线C的轨迹; (Ⅱ)设直线,若曲线C上恰有两个点到直线的距离为1, 求实数的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号