某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为
、
、
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为
,求随机变量
的分布列与数数期望.(注:本小题结果可用分数表示)
(本小题满分14分)已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)证明:对一切大于1的正整数t,恒有f(t)>t;
(3)试求满足f(t)=t的整数的个数,并说明理由.
(本小题满分12分)已知双曲线C:=1(a>0,b>0)的一条准线方程为x=
,一个顶点到一条渐近线的距离为
.
(1)求双曲线C的方程;
(2)动点P到双曲线C的左顶点A和右焦点F的距离之和为常数(大于|AF|),且cosAPF的最小值为-,求动点P的轨迹方程.
(本小题满分12分)某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知该厂生产这种仪器,次品率p与日产量x(件)之间大体满足关系:.已知每生产一件合格的仪器可盈利A元,但每生产一件次品将亏损
元,厂方希望定出适当的日产量.
(1)试判断:当日产量(件)超过94件时,生产这种仪器能否赢利?并说明理由;
(2)当日产量x件不超过94件时,试将生产这种仪器每天的赢利额T(元)表示成日产量x(件)的函数;
(3)为了获得最大利润,日产量x件应为多少件?
(本小题满分12分)在△OAB中,,AD与BC交于点M,设
=a,
=b,
(1)用a,b表示;
(2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设=p
,
=q
,求证:
=1.
(本小题满分12分)如图,已知:PD⊥平面ABCD,AD⊥DC,AD∥BC,PD∶DC∶BC=1∶1∶.
(1)求PB与平面PDC所成角的大小;
(2)求二面角D—PB—C的正切值.