游客
题文

某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为 4 5 3 5 2 5 ,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为 ζ ,求随机变量 ζ 的分布列与数数期望.(注:本小题结果可用分数表示)

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分14分)已知函数f(x)满足对任意实数xy都有fx+y)=fx)+fy)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)证明:对一切大于1的正整数t,恒有ft)>t;
(3)试求满足ft)=t的整数的个数,并说明理由.

(本小题满分12分)已知双曲线C:=1(a>0,b>0)的一条准线方程为x=,一个顶点到一条渐近线的距离为.
(1)求双曲线C的方程;
(2)动点P到双曲线C的左顶点A和右焦点F的距离之和为常数(大于|AF|),且cosAPF的最小值为-,求动点P的轨迹方程.

(本小题满分12分)某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知该厂生产这种仪器,次品率p与日产量x(件)之间大体满足关系:.已知每生产一件合格的仪器可盈利A元,但每生产一件次品将亏损元,厂方希望定出适当的日产量.
(1)试判断:当日产量(件)超过94件时,生产这种仪器能否赢利?并说明理由;
(2)当日产量x件不超过94件时,试将生产这种仪器每天的赢利额T(元)表示成日产量x(件)的函数;
(3)为了获得最大利润,日产量x件应为多少件?

(本小题满分12分)在△OAB中,ADBC交于点M,设=a=b
(1)用ab表示;
(2)在线段AC上取一点E,在线段BD上取一点F,使EFM点,设=p=q,求证:=1.

(本小题满分12分)如图,已知:PD⊥平面ABCDADDCADBCPDDCBC=1∶1∶.

(1)求PB与平面PDC所成角的大小;
(2)求二面角DPBC的正切值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号