游客
题文

如图,在底面为直角梯形的四棱锥 P - A B C D 中, A D / / B C , A B C = 90 ° , P A 平面 P A = 4 , A D = 2 , A B = 2 3 , B C = 6 .
image.png

(Ⅰ)求证: B D 平面 P A C ;

(Ⅱ)求二面角 P - B D - D 的大小.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知,t∈[,8],对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。

已知函数f(x)=(a>0,x>0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;
(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.

已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)="f" [g2(x)],…gn(x)=f[gn–1(x)],…
(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;
(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;
(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.

设集合A={x|4x–2x+2+a=0,x∈R}.
(1)若A中仅有一个元素,求实数a的取值集合B;
(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号