已知各项全不为零的数列
的前k项和为
,且
,其中
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)对任意给定的正整数
,数列
满足
.求
.
(本小题满分12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(Ⅰ)A类工人中和B类工人各抽查多少工人?
(Ⅱ)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2
表1:
生产能力分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
4 |
8 |
![]() |
5 |
3 |
表2:
生产能力分组 |
![]() |
![]() |
![]() |
![]() |
人数 |
6 |
y |
36 |
18 |
先确定,再在答题纸上完成下列
频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(本小题满分12分)极坐标方程为的直线L与
轴的交点为
,与曲线
(
为参数)交于
(Ⅰ)写出曲线和直线L的直角坐标方程;(Ⅱ)求
(本小题满分10分)求下列函数的导函数:
(1)(2)
(3)
设函数,其中
为常数.
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)若函数有极值点,求
的取值范围及
的极值点;
(Ⅲ)若,试利用(II)求证:n
3时,恒有
.
已知函数的定义域为[-2,t](t>-2),
(Ⅰ)试确定t的取值范围,使得函数在[-2,t]上为单调函数;
(Ⅱ)求证:对于任意的t>-2,总存在∈(-2,t),满足
,
并确定这样的的个数.