(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,
∠ACB=90°,AC=BC=CC1=2.
(I)证明:AB1⊥BC1;
(II)求点B到平面AB1C1的距离;
(III)求二面角C1—AB1—A1的大小.
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1,侧棱AA1⊥平面ABC,O、D、E分别是棱AB、A1B1、AA1的中点,点F在棱AB上,且.
(1)求证:EF∥平面BDC1;
(2)求证:平面OCC1D⊥平面ABB1 A1;
(3)求二面角E-BC1-D的余弦值.
(本小题满分12分)已知单调递增的等比数列满足:
,且
是
的等差中项.
(1)求数列的通项公式;
(2)若,
,求
成立的正整数
的最小值.
(本小题满分12分)某用人单位招聘员工依次为自荐材料审查、笔试、面试共三轮考核.规定:只能通过前一轮考核后才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过.小王三轮考核通过的概率分别为,
,
,且各轮考核通过与否相互独立.
(1)求小王通过该招聘考核的概率;
(2)若小王通过第一轮考核,家长奖励人民币1200元;若小王通过第二轮考核,家长再奖励人民币1000元;若小王通过第三轮考核,家长再奖励人民币1400元.记小王得到奖励的金额为,求
的分布列和数学期望.
(本小题满分12分) 在中,角
的对边分别是
,若
.
(1)求角的大小;
(2)若,
的面积为
,求
的值.
(本小题满分14分)已知二次函数,关于
的不等式
的解集为
,(
),设
.
(1)求的值;
(2)R
如何取值时,函数
存在极值点,并求出极值点;
(3)若,且
,求证:
N
.