(本小题满分14分)
在平面直角坐标系中,为坐标原点,已知两点
,若动点
满足
且点
的轨迹与抛物线
交于
两点.
(1)求证:;
(2)在轴上是否存在一点
,使得过点
的直线
交抛物线
于
两点,并以线段
为直径的圆都过原点。若存在,请求出
的值及圆心
的轨迹方
程;若不存在,请说明理由.
设函数f(x)=sin+sin
+
cos ωx(其中ω>0),且函数f(x)的图象的两条相邻的对称轴间的距离为
.
(1)求ω的值;
(2)将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间上的最大值和最小值.
已知a,b∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3-
x2+bx的图象在交点(0,0)处有公共切线.
(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;
(2)设-1<x1<x2,当x∈(x1,x2)时,证明:.
如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线l在y轴上的截距为m,直线l与椭圆相交于A,B两个不同点.
(1)求实数m的取值范围;
(2)证明:直线MA,MB与x轴围成的三角形是等腰三角形.
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.
(1)若F为PE的中点,求证:BF∥平面ACE;
(2)求三棱锥P-ACE的体积.
为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令赞成的人数如下表:
月收入 |
[15,25) |
[25,35) |
[35,45) |
[45,55) |
[55,65) |
[65,75] |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
12 |
5 |
2 |
1 |
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01的前提下认为非高收入族赞成楼市限购令?
非高收入族 |
高收入族 |
合计 |
|
赞成 |
|||
不赞成 |
|||
合计 |
(2)现从月收入在[15,25)的人群中随机抽取两人,求所抽取的两人都赞成楼市限购令的概率.
附:K2=
P(K2≥k0) |
0.05 |
0.025 |
0.010 |
0.005 |
k0 |
3.841 |
5.024 |
6.635 |
7.879 |