(本小题满分12分)
一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元
(1)该厂的月产量多大时,月获得的利润不少于1300元?
(2)当月产量为多少时,可获得最大利润?最大利润是多少元?
在平面直角坐标系中,圆的参数方程为
,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.求:
(1)圆的直角坐标方程;
(2)圆的极坐标方程.
已知直线的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求圆的直角坐标方程;
(2)若是直线
与圆面
≤
的公共点,求
的取值范围.
在直角坐标系中,直线
的方程为
,曲线
的参数方程为
.
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为
,判断点
与直线
的位置关系;
(2)设点是曲线
上的一个动点,求它到直线
的距离的最小值.
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
(1)求圆C的极坐标方程;
(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为
(t为参数),直线
与圆C相交于A,B两点,已知定点
,求|MA|·|MB|.
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.