(本小题满分12分)
象棋比赛中,胜一局得2分,负一局得0分,和棋一局得1分,在甲对乙的每局比赛中,甲胜、负、和的概率依次为0.5,0.3,0.2.现此二人进行两局比赛,得分累加。
(I)求甲得2分的概率;
(II)记甲得分为
的分布列和期望。
已知函数(其中
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
.
(Ⅰ)求的解析式;
(Ⅱ)当,求
的值域.
已知函数的定义域为集合
,
的定义域为集合
,集合
(1)若,求实数
的取值范围.
(2)如果若则
为真命题,求实数
的取值范围.
已知向量
(1)若分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足
的概率.
(2)若在连续区间[1,6]上取值,求满足
的概率.
已知圆的圆心与点
关于直线
对称,直线
与圆
相交于
、
两点,且
,求圆
的方程.
甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两船中有一艘在停泊位时,另一艘船必须等待的概率.