(本小题满分12分)在直角坐标平面上有一点列 对一切正整数n,点Pn在函数
的图象上,且Pn的横坐标构成以
为首项,-1为公差的等
差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
(3)设
等差数列
的任一项
,其中
是
中的最大数,
,求数列
的通项公式.
(本小题满分14分)
省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻
(时)的关系为
,其中
是与气象有关的参数,且
,若用每天
的最大值为当天的综合放射性污染指数,并记作
.
(1)令,
,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性
污染指数是否超标?
(本小题满分14分)在直三棱柱中,AC=4,CB=2,AA1=2,
,E、F分别是
的中点.(1)证明:平面
平面
;
(2)证明:平面ABE;
(3)设P是BE的中点,求三棱锥的体积.
(本小题满分14分)
已知函数.]
(1)求函数的最小值和最小正周期;
(2)设的内角
、
、
的对边分别为
,
,
,且
,
,若
,求
,
的值.
(14分)已知函数的图象过原点,且关于点(-1,1)成中心对称.(1)求函数
的解析式;(2) 若数列
(nÎN*)满足:
,求数列
的通项公式
.
(13分)已知数列(
)的前
项的
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,记数列
的前n项和为
,求使
成立的最小正整数n的值。