(本小题满分12分) 已知函数.
(I)若f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)记f(x)在的最小值为f(t),求t的值。
(本小题满分12分)已知数列的前
项和为
,首项
,且对于任意
都有
.
(Ⅰ)求的通项公式;
(Ⅱ)设,且数列
的前
项之和为
,求证:
(本小题满分12分)在锐角中,
.
(Ⅰ)求角;(Ⅱ)若
,求
的取值范围.
选修4-5:不等式选讲
已知函数
(1)若的解集为
,求实数
的值;
(2)当且
时,解关于
的不等式
选修4-4:坐标系与参数方程选讲
在直角坐标系中,曲线
的参数方程为
(
为参数),以原点为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
(1)求曲线的普通方程与曲线
的直角坐标方程;
(2)设点,曲线
与曲线
交于
,求
的值.
已知函数.
(1)求函数的单调区间;
(2)设函数,若
,使得
成立,求实数
的取值范围;
(3)若方程有两个不相等的实数根
,求证: